Biophysical Feedbacks in the Tropical Pacific
نویسندگان
چکیده
This study explores the influence of phytoplankton on the tropical Pacific heat budget. A hybrid coupled model for the tropical Pacific that is based on a primitive equation reduced-gravity multilayer ocean model, a dynamic ocean mixed layer, an atmospheric mixed layer, and a statistical atmosphere is used. The statistical atmosphere relates deviations of the sea surface temperature from its mean to wind stress anomalies and allows for the rectification of the annual cycle and the El Niño–Southern Oscillation (ENSO) phenomenon through the positive Bjerknes feedback. Furthermore, a nine-component ecosystem model is coupled to the physical variables of the ocean. The simulated chlorophyll concentrations can feed back onto the ocean heat budget by their optical properties, which modify solar light absorption in the surface layers. It is shown that both the surface layer concentration as well as the vertical profile of chlorophyll have a significant effect on the simulated mean state, the tropical annual cycle, and ENSO. This study supports a previously suggested hypothesis (Timmermann and Jin) that predicts an influence of phytoplankton concentration of the tropical Pacific climate mean state and its variability. The bioclimate feedback diagnosed here works as follows: Maxima in the subsurface chlorophyll concentrations lead to an enhanced subsurface warming due to the absorption of photosynthetically available shortwave radiation. This warming triggers a deepening of the mixed layer in the eastern equatorial Pacific and eventually a reduction of the surface ocean currents (Murtugudde et al.). The weakened south-equatorial current generates an eastern Pacific surface warming, which is strongly enhanced by the Bjerknes feedback. Because of the deepening of the mixed layer, the strength of the simulated annual cycle is also diminished. This in turn leads to an increase in ENSO variability.
منابع مشابه
El Niño and Southern Oscillation (ENSO): A Review
The ENSO observing system in the tropical Pacific plays an important role in monitoring ENSO and helping improve the understanding and prediction of ENSO. Occurrence of ENSO has been explained as either a self-sustained and naturally oscillatory mode of the coupled ocean-atmosphere system or a stable mode triggered by stochastic forcing. In either case, ENSO involves the positive ocean-atmosphe...
متن کاملIntensification of the annual cycle in the tropical Pacific due to greenhouse warming
[1] The annual cycle is one of the most important components of the global climate system Yet little attention has been paid to the response of the equatorial annual cycle to anthropogenic climate change. Here we present results from a global climate model with high tropical resolution that simulates a strong intensification of the annual cycle in the tropical Pacific in response to increased g...
متن کاملAtmospheric Feedbacks over the Tropical Pacific in Observations and Atmospheric General Circulation Models: An Extended Assessment
The dynamical and radiative feedbacks from the deep convection over the tropical Pacific are quantified using ENSO signal in that region for both the observation and 16 climate models. Different from a previous analysis, we recognize the nonlinear relationship between deep convection and SST over that region, and perform the evaluation using the data from the warm phase and the cold phase separ...
متن کاملA Simple Model for the Pacific Cold Tongue and ENSO*
A conceptual model is constructed based upon the Bjerknes hypothesis of tropical atmosphere–ocean interaction. It is shown that strong feedbacks among the trade winds, equatorial zonal sea surface temperature contrast, and upper-ocean heat content occur in the tropical Pacific basin. Coupled atmosphere–ocean dynamics produce both the strong Pacific cold-tongue climate state and the El Niño–Sout...
متن کامل